Some singular values and unitarily invariant norm inequalities concerning generalized inverses
نویسندگان
چکیده
منابع مشابه
Perturbation bounds for $g$-inverses with respect to the unitarily invariant norm
Let complex matrices $A$ and $B$ have the same sizes. Using the singular value decomposition, we characterize the $g$-inverse $B^{(1)}$ of $B$ such that the distance between a given $g$-inverse of $A$ and the set of all $g$-inverses of the matrix $B$ reaches minimum under the unitarily invariant norm. With this result, we derive additive and multiplicative perturbation bounds of the nearest per...
متن کاملSome Inequalities for Unitarily Invariant Norms
This paper aims to present some inequalities for unitarily invariant norms. In section 2, we give a refinement of the Cauchy-Schwarz inequality for matrices. In section 3, we obtain an improvement for the result of Bhatia and Kittaneh [Linear Algebra Appl. 308 (2000) 203-211]. In section 4, we establish an improved Heinz inequality for the Hilbert-Schmidt norm. Finally, we present an inequality...
متن کاملInequalities for unitarily invariant norms
This paper aims to discuss some inequalities for unitarily invariant norms. We obtain several inequalities for unitarily invariant norms.
متن کاملSingular Values and Maximum Rank Minors of Generalized Inverses
Singular values and maximum rank minors of generalized inverses are studied. Proportionality of maximum rank minors is explained in terms of space equivalence. The Moore–Penrose inverse A† is characterized as the {1}–inverse of A with minimal volume.
متن کاملInequalities for Unitarily Invariant Norms and Bilinear Matrix Products
We give several criteria that are equivalent to the basic singular value majorization inequality (1.1) that is common to both the usual and Hadamard products. We then use these criteria to give a uniied proof of the basic majorization inequality for both products. Finally, we introduce natural generalizations of the usual and Hadamard products and show that although these generalizations do not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2007
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil0701099m